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a b s t r a c t

In this study, a hybrid deep-learning model termed as ODANN, built upon neural networks (NN)
coupled with data assimilation and natural language processing (NLP) features extraction methods,
has been constructed to concurrently process daily COVID-19 time-series records and large volumes
of COVID-19 related Twitter data, as representative of the global community’s aggregated emotional
responses towards the current pandemic, to model the growth rate in the number of confirmed COVID-
19 cases globally via a proposed G parameter. Overall, there were 3 key components to ODANN’s
development phase, namely: (i) data hydration and pre-processing were performed on COVID-19
related Twitter data ranging between 23 January 2020 and 10 May 2020, which amounted to over
100 million Tweets written in English language; (ii) multiple NLP features extraction methods were
subsequently leveraged to encode the hydrated Twitter data into useful semantic word vectors for
training ODANN under an optimal set of hyperparameters; and (iii) historical time-series data of
defined characteristics were also assimilated into ODANN’s selected hidden layer(s) to model the G
parameter daily with a lead-time of 1 day. By far, our experimental results demonstrated that by
adopting a rolling time-window size of 5 days, with respect to the number of historical time-series
records for assimilating different data features, enabled ODANN to outperform other traditional time-
series models and recent studies, in terms of the computed RMSE and MAE scores attained from the
model’s testing step. Overall, the summarized results from ODANN demonstrated its competitive edge
in modelling and forecasting the growth rate in the number of COVID-19 cases globally.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus disease 2019 (COVID-19) can easily be spread
ia coughs or sneeze droplets by entering one’s body through
heir eyes, nose, and mouth [1]. When a person communicates
ith an infected person within a distance of 1.8 m, the infection

ikelihood of the former individual augments [2]. The highly
nfectious nature of the virus has since accelerated its spread
lobally. On January 30, 2020, the World Health Organization
WHO) declared the COVID-19 outbreak as a Public Health Emer-
ency of International Concern. During March 2020, the WHO
fficially announced COVID-19 as a global pandemic, hence aggra-
ating healthcare and travel concerns globally. Due to its highly
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infectious nature, the number of confirmed COVID-19 active and
death cases have continued to increase till today, even as vacci-
nation rates gradually ramp up in many countries, hence posing
intractable challenges to the global health, environment, and
economy [3,4]. Within a short time span, COVID-19 has already
been considered to be one of the biggest crises faced by humanity
in the 21st century [5].

At present, the global community is closely tracking the evo-
lution of COVID-19 by reporting the daily number of infected
persons, recovered persons, and deaths, resulting in available
datasets on the internet for research investigations to better
understand the unknown virus qualitatively and quantitatively.
An important problem statement can thus be formulated, namely:
how can we estimate the number of confirmed cases globally,
with suitable lead-time and a level of confidence, by analysing
historical data pertaining to the growth rate in the number of
confirmed COVID-19 cases together with relevant social-
environment factors. By modelling and forecasting the spread of
COVID-19 over time on a global scale, decision-makers around the
world can then undertake appropriate preventative and response
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easures which include, but not limited to, social distancing, self-
uarantine, travel restriction, lockdown, etc., to better manage
he virus spread over time. To build towards this target objective,
tatistical and mathematical models can serve as useful predictive
ools to model the temporal spread of COVID-19 globally.

Regression analysis, which is a very conventional, but yet
seful, technique in the machine learning (ML) domain, is gener-
lly useful for time-series predictions in many diverse domains.
ence, it can be considered helpful to decision-makers to forecast
he spread of COVID-19 over time on the basis that there is
ome level of correlation between the virus’ transmission rate
nd a range of controlled and/or uncontrolled factors [6]. For
xample, the well-known auto-regression integrated moving av-
rage (ARIMA) model is expected to estimate the trend and
easonal profiles of the virus spread [7]. On the other hand,
he susceptible–infectious-removed (SIR) epidemiological model,
hich is built upon the compartments of susceptible (S), infected
I), and removed (R) individuals, may also be useful to model
he transmission rate of COVID-19 [8]. However, SIR and its
ariants set the rates of transmission and removal to be constants,
ence hindering their abilities to adapt to uncontrollable external
onditions/factors [9]. At present, the global transmission rate of
OVID-19 exhibits complex patterns which are closely related
o a range of social, governmental, and environmental factors.
he large multitude of factors, however, can be difficult to be
everage effectively, without any significant data pre-processing,
o model and forecast the number of confirmed COVID-19 cases
ver time. Besides the above-mentioned traditional quantitative
ethods available, deep learning approaches can also serve as
ood alternatives by learning from historical data and other forms
f big-data information to maximize the prediction model’s accu-
acy in forecasting the transmission rate of COVID-19, which in
urn can be useful to support clinical and academic research for
OVID-19 in the foreseeable future [10].
One important data source pertaining to COVID-19 can be

erived from social media platforms which can be helpful to
nvestigate the society’s emotional responses towards the current
andemic [11,12]. For example, Twitter enables netizens to post
essages and retweet contents pertaining to all forms of issues
ccurring globally. The platform also provides users instant access
o millions of short messages (public responses, opinions, etc.)
owards any specific topic of their interest [13]. In today’s context,
here are currently more than 300 million monthly active users
n Twitter and an average of 500 million tweets are being made
aily [14]. An advantage of using Twitter information lies in its
eal-time deployment and publicly available information, which
re tagged by different time zones and geographic locations, for
asy access in most parts of the world. Not surprisingly, due to the
arge volume of data available on Twitter’s platform, there have
lready been research works done in leveraging Twitter data for
isease surveillance, which can subsequently provide important
nsights into public health conditions and return instant feedback
o healthcare professionals and the different stakeholders.

ML methods have since been incorporated into Twitter-based
ealthcare framework to monitor, analyse, and predict the out-
reak of different types of diseases in the near real-time con-
ext [15]. For example, Signorini et al. [16] examined embedded
nformation in H1N1-related tweets using support vector regres-
ion (SVR) to quantify the public sentiments towards the flu
irus in the United States and estimate the weekly influenza-like
llness level with a reasonably low error percentage of 0.28% on
verage. Hirose and Wang [17] applied multiple linear regres-
ion (MLP) methods with ridge regularization on Twitter data
ombined with other influenza-like data features derived from
he Centres for Disease Control and Prevention (CDC). The model

redicted the spread of influenza with a resulting root mean

2

square error (RMSE) of 0.002 on average. Santos and Matos [18]
built a Naïve Bayes classifier and MLP models to analyse tweets
and web search queries to forecast the incidence rate of in-
fluenza in Portugal, where the prediction results have an average
correlation ratio of 0.849 with the available ground truth data.
It has also been demonstrated that analysing Twitter data of-
fers valuable opportunities to track influenza’s infection rate in
near real-time and to quantitatively understand the potential
upward/downward trends. The predictions can subsequently be
useful to generate early warnings to improve both clinical and
public health responses. Apart from the conventional flu virus,
Twitter data has also been leveraged to forecast the outbreak
trends of other infectious diseases such as Zika virus, Malaria,
Ebola, and others [19]. The above-mentioned studies have thus
indicated the possibility of combining Twitter data with suitable
ML models to investigate the infection rate of COVID-19 globally.

In this paper, we propose a novel prediction model, termed
as optimized data assimilated neural network (ODANN), which
unifies the use of natural language processing (NLP) [20], for
generating useful input features layer for neural networks (NN),
and data assimilation component for concatenating time-series
data into optimal location(s) of the NN’s hidden layers to forecast
the global growth rate in the total number of confirmed COVID-19
cases with a good level of predictive accuracy. Modelling of the
cases’ growth rate is achieved via a G parameter which considers
the total reported number of confirmed COVID-19 cases on a
rolling-forward daily basis. In the model development of ODANN,
features extraction methods via NLP are leveraged to extract
high-level numerical features from vast volumes of Twitter data
(millions in exceedance) associated with COVID-19 since late
January 2020. The encoded features from the available Twitter
data are then assimilated with historical time-series records for
the proposed G parameter by optimally concatenating the fea-
tures with selected hidden layers of a personalized deep NN
model to forecast the G parameter with a defined lead-time of 1
day. At present, our study demonstrates that the resulting time-
series predictions for the G parameter from our proposed ODANN
model are generally more accurate than the corresponding results
derived from other classical time-series prediction models on the
same dataset being investigated. The overall novelty of ODANN
lies in its end-to-end model framework capable of processing
large volumes of Twitter data, as representative of the general
community’s emotional responses towards COVID-19, to con-
struct useful input features to train deep learning models. The
hidden layers of the deep NNs are also carefully optimized, in
terms of the selected number of neurons and their placement
locations, to assimilate with other important time-series data
features to maximize the resulting model’s predictive accuracy to
forecast the proposed G parameter with a lead-time of 1 day. We
are hopeful that ODANN can serve as an alternative prediction
model to assist the research community to enhance existing
mechanism studies for COVID-19, and subsequently provide use-
ful insights into the nuanced relationship(s) between the global
spread of COVID-19 over time and the community’s aggregated
emotional responses towards the virus.

This paper is structured as follows. Section 2 reviews the pre-
vious research works done, using ML and/or deep learning (DL),
to analyse Twitter data for modelling the temporal transmission
behaviour of COVID-19. In Section 3, we describe our proposed
engineering workflow for ODANN in detail, followed by running
the constructed prediction model via several computational ex-
periments (model training, validation, and testing) in Section 4 to
evaluate the model’s predictive accuracy on a defined time-series
dataset for the G parameter and COVID-19 related Twitter data.
In Section 5, we compare the results derived from ODANN with

that of other conventional time-series prediction models, coupled
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ith analysing the models’ predictive robustness in handling
issing data conditions. In addition, we also compare ODANN’s
redictive capability with other relevant research studies for the
ame research objective as outlined in this study. Finally, Sec-
ion 6 succinctly summarizes the key results derived from our
nalysis using ODANN by far, and the future works to be involved
n the same direction.

. Literature review

The growing availability of COVID-19 related data provides
seful quantitative and qualitative information for researchers
o leverage on for modelling the virus’ transmission behaviour
ver time. With the advantages provided by machine learning
e.g., scalability, faster computations, etc.) in the field of health-
are [21], researchers across the world have been developing var-
ous ML-based frameworks to manage the unprecedented COVID-
9 crisis. For example, Google’s DeepMind applied an improved
lphaFold system to model the uncharacterized protein struc-
ure related to SARS-CoV-2 and generate accurate 3D models to
uantitatively understand complex functions of the underlying
roteins. Beck et al. [22] designed a drug-target interaction pre-
iction model via deep learning (DL) to efficiently identify the
xisting drug candidates that can be re-purposed to disrupt viral
roteins in the COVID-19 virus.
On the clinical scale, deep convolutional neural networks

DCNN) are developed to automatically identify COVID-19’s in-
ections and regions of interest (ROI) via medical images in
n economical and efficient manner [23], which can be espe-
ially helpful for the less-developed communities. Pre-trained
L models such as ResNet, U-Net, VB-Net, and others, have also
een employed for X-ray or CT image segmentation in COVID-
9 applications [23], which have generated promising results in
istinguishing COVID-19 from community-acquired pneumonia
y segmenting and locating infected lung regions and lesions, and
ence tracking and evaluating the virus’ severity and evolution
ver time [24]. On the other hand, as numerical data pertaining to
he number of suspected, confirmed, cured, and death COVID-19
ases, passengers travel trajectories, etc., are being shared widely
n the internet daily, traditional and novel ML methods can be
pplied to learn from the vastly available information to forecast
he transmission of COVID-19 [25].

For example, researchers have developed multiple prediction
odels to forecast the virus’ future trend behaviour and evaluate

he impacts of COVID-19 by estimating key indicators/features
ssociated with the virus which include, but not limited to,
ts prevalence, mortality rate, recovery rate, etc. For example,
ustam et al. [26] trained four ML regression models, namely
he linear regression (LR), least absolute shrinkage and selection
perator (LASSO), support vector machine (SVM), and exponential
moothing (ES), to perform reliable forecasting on the global
umbers of confirmed, recovered and death cases using a 10-days
ead-time. The authors, however, underlined the importance to
ugment the amount of training data to improve their models’
esulting predictions. Yesilkanat [27] adopted the random forest
RF) algorithm to estimate the daily increase in the number
f confirmed COVID-19 cases globally with estimated coeffi-
ient of determination values ranging between 0.843 and 0.995.
esearchers [28–30] have also leveraged on long-short-term-
emory (LSTM) neural network, which is capable to model long
equential time-series data, and capture long-term dependencies
t the same time, to deliver high-quality prediction results on the
umber of confirmed COVID-19 cases over time. However, the
resent daily numbers of COVID-19 cases and deaths may not
ufficiently large to maximize the forecasting capability of LSTM
odel. Going forward, it is thus desirable to apply alternative
3

DL methods to fully leverage on the widely available COVID-19
related data to bridge the gap between intelligent computing
and COVID-19 prognosis, which can subsequently be useful to
assist the different stakeholders to better manage the current
pandemic.

The wealth of publicly available Twitter data can be actively
collected via Twitter’s streaming API and Tweepy on a daily
basis [31,32], which thus offers opportunities for large-scale data
mining of the global community’s emotional responses towards
COVID-19 and subsequently enabling us to quantitatively inves-
tigate any relationship between the trending emotions and the
proposed G parameter daily with defined lead-times on a global
scale. As an example, Lwin et al. [33] examined the public’s
emotions with over 20 million Twitter posts worldwide during
the early outbreak of COVID-19 globally, where the reported find-
ings can be useful to support government measures to maintain
the general public’s mental wellbeing in the present pandemic
situation. Park et al. [34] performed network and context anal-
ysis using keywords from COVID-19 associated Twitter data, in
Korean language, to track information, discover conversation pat-
terns, and capture the public’s interests and perceptions towards
COVID-19. Since Twitter data can provide aggregated insights into
individuals’ emotional responses (or attitudes) towards the global
transmission rate of COVID-19, the large data availability can thus
be numerically processed to forecast the proposed G parameter
by modelling the dimensional effects due to the community’s
aggregated emotions over time. An important pointer to highlight
is that we would expect the raw Twitter data to contain ‘noises’
such as wrong spellings, punctuations, and differing expressions
for underlying common messages. Hence, significant data pre-
processing, combined with NLP features extraction methods, is
required to minimize the inherent ‘noises’ and encapsulate the
nuanced relationship between the different words available and
the respective context, and vice versa. An interesting, but physi-
cally intuitive, observation is that the rising number of confirmed
COVID-19 cases globally is correlated to Twitter data in the nega-
tive emotional realm as the community generally become anxious
about the deteriorating social conditions since the virus’s incep-
tion [35]. The key research question is how we can maximize
the value of Twitter data to potentially quantify the complex
relationship between the global transmission patterns of COVID-
19, i.e., the G parameter, and the relevant emotional responses
from the global community.

While large volumes of Twitter data, reflecting the emotional
state of the public towards COVID-19, can easily be accessed, the
available data requires significant data pre-processing to min-
imize the inherent noises as discussed. In this aspect, Zheng
et al. [36] combined semantic features derived from online news
and reports into LSTM neural networks, which could effectively
minimize the error in estimating the overall infection rate via
an improved susceptible–infected (ISI) model. At the same time,
Hazarika and Gupta [37] also recently verified that higher data
dimensions, which encompass the social, economic, or/and envi-
ronmental conditions, derived from the pre-processing step can
be useful to improve the prediction model’s resulting accuracy in
forecasting the transmission rate of COVID-19 globally.

The above-discussed information from the present literature
generally underlines the rationality and feasibility of combining
large-scale Twitter data and historical time-series records of de-
fined data characteristics for useful COVID-19 related predictions.
Hence, this study proposes the ODANN model which consists
of an engineering workflow process to systematically extract
high-level encoded features from pre-processed COVID-19 related
Twitter data, followed by optimally assimilating the model’s hid-
den layers with relevant historical time-series records to model
and forecast the proposed G parameter over time. To the best of
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ur knowledge, the formulated workflow of ODANN has not been
eveloped in the literature by far, and we are thus hopeful that
he ODANN can serve as an alternative prediction model to build
owards reliable predictions in the number of confirmed COVID-
9 cases globally on a rolling-forward daily basis using social
edia big-data with defined lead-times. The forecasting results
ould potentially assist the different stakeholders to implement
ppropriate measures to manage COVID-19 on a whole as the
irus has been widely expected to become an endemic in the
oreseeable future.

. Methodology

Fig. 1 illustrates the overall workflow for ODANN’s devel-
pmental phase which involves the following systematic tasks,
amely: (1) processing more than 100 million of COVID-19 re-
ated Twitter data, written in English language, via suitable NLP
eatures extraction methods for constructing useful numerically
ncoded features; (2) training of deep NN (DNN) model by lever-
ging on the encoded features derived from the preceding Task 1,
nd assimilating with historical time-series records for the pro-
osed G parameter and/or other data features during the model
raining step; and (3) comparing results derived from a trained
DANN prediction model, with its optimized hyperparameters,
ith other traditional time-series prediction models to forecast
he same G parameter on a daily basis with a defined lead-time.
t the same time, a pseudo-code in Algorithm 1 is provided to
ummarize the key computational steps involved in ODANN’s
roposed workflow.

.1. Data hydration and pre-processing

Since the inception of COVID-19 in Wuhan, China, in De-
ember 2019, over 100 million of related Tweets, have been
ade on the internet propagating the keywords of ‘‘covid’’,

‘coronavirus’’, ‘‘ncov19’’, ‘‘ncov2019’’ and etc. The millions of
weets, written in the English language, were extracted from an
pen-source Kaggle source (https://www.kaggle.com/lopezbec/
ovid19-tweets-dataset) for the modelling analysis in this study.
n the selected open-source dataset, the total amount of Tweets
ritten in English constitutes to around 60% of the total available
weets collated. We analysed the available Tweets for the period
etween 23 January 2020 and 10 May 2020 for extensiveness,
hile also accounting for the computational resources (memory
torage) limitation in our present study. We note that the amount
f COVID-19 Tweets increased exponentially on Twitter’s plat-
orm from March 2020 and thereafter as illustrated in Fig. 2. The
raining phase of ODANN was performed using Azure’s NC12sV2
-Series virtual machine (VM) which has 12vCPUs, 224GiB RAM
nd 2 in-built Tesla P100 GPU cards.
The aggregated pool of Tweets (made in English language) was

onsidered to model the proposed G-parameter over time on a
lobal scale, instead of localizing into specific countries, for the
ollowing reasons:

• In the extracted Twitter data, only the geographic informa-
tion of the re-Tweets can be obtained, however, with min-
imum information about the Tweets contributors in terms
of age, race, etc. The geographic information of the re-
Tweets revealed the dominant terms of ‘‘global’’, ‘‘world-
wide’’, ‘‘around the world’’, ‘‘everywhere’’ and ‘‘linkedin:’’
as summarized in Table 1. Hence, this observation enables
us to first investigate any aggregated correlation between
the complexity of the Tweets made by the global community
and the proposed G-parameter which quantifies the growth
rate in the confirmed number of COVID-19 cases on the
global scale.
4

Table 1
Top 30 contributors of COVID-19 related re-Tweets in the extracted dataset
between 23 January 2020 and 10 May 2020.
Location name Quantity

Washington, DC 1898553
New York, NY 1049229
India 704448
Globala 635534
London 570490
Washington, D.C. 539826
France 462137
New York 461072
United States 454821
New York city 426335
Madrid 397464
Brasil 372637
London, UK 342182
Paris, France 340845
London, England 337515
Los angeles, CA 318437
USA 255963
Venezuela 252693
Paris 246379
United Kingdom 240403
New York, USA 235346
New Delhi, India 234865
Argentina 230770
Worldwidea 222662
Linkedin:a 221702
Buenos Aires, Argentina 219081
Around the worlda 209210
New Delhi 198667
Everywherea 195892
São Paulo, Brasil 191823

aKeywords which indicate the contributors of COVID-19 re-Tweets on a global
aspect.

• The top 10 countries (since 2020) having the highest num-
bers of reported confirmed COVID-19 cases included USA,
India, United Kingdom, Brazil, France, etc., were also among
the list of top contributors to the re-Tweets as shown in
Table 1. This thus underlines our approach to first aggregate
all available Tweets, without any prior filtering with respect
to any countries, to correlate with the G- parameter over
time on the global scale.

As discussed earlier, the large amount of Tweet data available
serves as useful data to analyse and quantify the aggregated
emotional responses of the general community towards COVID-
19 on the global scale. The proposed G parameter, which relates
to the global growth rate in the total number of confirmed COVID-
19 cases on a rolling-forward daily basis, can be expressed as
follows:

Gt =
Yt − Yt−1

Yt−1
× 100% (1)

where Yt represents the global number of confirmed COVID-
19 cases at time (t), and Yt−1 represents the global number
of COVID-19 cases at time (t − 1) from the previous day. For
example, the G value on 31 January 2020 (t) is computed by
dividing the difference between the respective number of COVID-
19 confirmed cases on 31 January (t) and 30 January 2020 (t −1)
by the number of COVID-19 confirmed cases from the latter’s
date. The number of confirmed COVID-19 cases recorded on the
global context, since 31 December 2019, were also extracted
from another open-source database (https://ourworldindata.org/
coronavirus-data). Our analysis instead models the daily growth
rate, on a rolling-forward basis, in the proposed G parameter
for the period between 25 January 2020 and 11 May 2020 (see
Fig. 3). Note that we started on 25 January 2020 to forecast the
G value in order to maintain a lead-time of 1 day in leveraging

https://www.kaggle.com/lopezbec/covid19-tweets-dataset
https://www.kaggle.com/lopezbec/covid19-tweets-dataset
https://www.kaggle.com/lopezbec/covid19-tweets-dataset
https://ourworldindata.org/coronavirus-data
https://ourworldindata.org/coronavirus-data
https://ourworldindata.org/coronavirus-data
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Fig. 1. ODANN’s workflow to integrate Twitter data and other historical time-series records to model and forecast G parameter over time, coupled with comparison
of model’s resulting accuracy with alternative time-series prediction methods.
the pre-processed Twitter data from the previous day, i.e. 23
January 2020, for the modelling step. We also note that we stored
the full historical time-records for the G parameter since 18
January 2020 for the analysis via a rolling time-window size for
data assimilation component in ODANN which will be further
discussed later.
5

Hydration of the known Tweet IDs involves extracting the
important text information, which contributes to the features
extraction component in this study. Data hydration is subse-
quently performed using an open-source command-line Tool,
Twarc which is also programmed in Python language. Each Tweet
data is represented as a JSON object that can be extracted using
Twitter API by requiring the user to provide 4 key parameters,
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Fig. 2. Number of the collected Tweets between 23 January 2020 and 10 May 2020 in this study.
Fig. 3. Plot of temporal variation of G values between 25 January 2020 (Day 1) and 11 May (Day 108) 2020.
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amely: (a) consumer_key; (b) consumer_secret; (c) access_token;
d) access_token_secret, in our personalized data hydration algo-
ithm for Twitter data. The in-built Twarc library can automati-
ally handle Twitter API’s ratelimits where the present quantity
imit is 45,000 tweets for every 15 min. In the present Twitter
ataset extracted for the analysis, there were approximately 1
illion Tweet IDs for every date since 23 January 2020 and

he average hydration time takes around 6 h with our present
omputational resources available. Hence, the total time required
o hydrate the total available Tweet IDs, ranging between 23
anuary 2020 and 10 May 2020, took around 45 days from the
tart of this study.
After hydration, the extracted text data in English language

ndergoes a series of pre-processing steps to remove their in-
erent ‘‘noises’’ prior to constructing their respective vectorized
emantic word representations. The constructed vectors from
ach processed Tweet data will subsequently be analysed via
DANN’s deep learning algorithms to model the proposed G
arameter from Eq. (1). Systematically, the following data pre-
rocessing steps are performed for each of the extracted Tweet
ata (with a unique Tweet ID), namely:

i. Tokenize each Tweet sentence, as corresponding to each
unique Tweet ID, into individual unique words/vocabularies
6

ii. Examine every individual word against a known pool of
stop words as derived from the open-source Natural Lan-
guage Toolkit (NLTK) library which is also programmed in
Python language. If any individual word is identified as a
stop word, remove them accordingly, else retain them for
further analysis

iii. Remove all punctuations
iv. Remove all other unknown symbols
v. Combine all remaining words to form a new sentence for

the specific Tweet ID

.2. Feature extraction methods via natural language processing

As highlighted earlier, each date, starting from 23 January
020, had an average of 1 million unique Tweets (including re-
weets) text data which contributed to their respective corpus
i.e., collection of words/sentences) for the assigned date. The
ombined corpus of processed Tweet data derived, as ranging
etween 23 January 2020 and 10 May 2020, will then be further
ncoded via suitable NLP feature extraction methods to build
heir corresponding semantic word representations of defined
ector sizes. The NLP features extraction algorithms adopted in
his study are namely: (a) TfidfVectorizer; (b) Word2Vec – Con-
inuous Bag of Words (CBOW); (c) Word2Vec – Skipgram. In the

https://dev.twitter.com/rest/public/rate-limiting
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ollowing, the significance and possible shortcomings for each
eature extraction method are briefly described.

.2.1. TfidfVectorizer
TfidfVectorizer stands for ‘‘Term Frequency – Inverse Document

Frequency’’ which represents the components of the respective
resulting scores assigned to each unique word in the original pool
of corpus [38]. The inherent Term Frequency function computes
the frequency of each unique word that exists in the corpus,
while the Inverse Document Frequency component downscales the
espective weights of common words within the same corpus.
he latter can be useful to handle imbalanced dataset where
he frequency of certain words can far exceed that of others. In
eneral, the TfidfVectorizer algorithm first tokenizes the corpus
nto individual words, followed by learning the pool of tokenized
ocabularies and then inverting the frequency weights of the
espective words for further analytics.

The current combined corpus of processed Tweet texts, as
anging between 23 January 2020 and 10 May 2020, contains
4,237 unique words of which each word has its own one-hot
ncoded representation. However, this method consists of several
hortcomings which include: (a) inability to effectively learn and
uantify the semantic relationship among the connected words
ithin the corpus or across the different texts for semantic anal-
sis purpose; and (b) the need to re-train the prediction model
f new words are introduced into the original corpus, hence
onstricting the model’s scalability.

.2.2. Word2Vec (CBOW and Skipgram)
Word2Vec is a powerful and efficient unsupervised machine

earning algorithm, as developed by Google in 2013, which can
reate neural word embeddings for large corpus. Its inherent al-
orithm contains an in-built two-layer neural network (shallow–
eep network) which processes the input corpus data by forming
he word representation for the different words. The output from
he neural network model is a set of feature vectors which rep-
esent the neighbouring words in the same corpus. It is worth
oting that Word2Vec can be classified as a shallow–deep neural
etwork model and works best with big text data where the
odel can learn the complex relationship among the different
ords inside the corpus. The derived feature vectors can be
rocessed further by using them as input features to train other
achine learning algorithms for predictive analytics or simply
ueried for semantic analysis purposes. In general, Word2Vec
ehaves in a similar format as autoencoders by first encoding
ach word in the concerned corpus and then train the model by
apping the vectorized representation of each word to that of the
ther surrounding words in the context of the same corpus. This
hole process can generally be performed via CBOW or Skipgram
lgorithms which were also previously developed by Google’s
esearch team [39,40].

In the CBOW model, the distributed representations of the
ontext (i.e., surrounding words), built upon a defined window
ize, are combined accordingly to predict the word in the middle.
n the contrary, the Skipgram model maps the distributed rep-
esentation of the input word by the user to predict its relevant
ontext. CBOW can generally train much faster than Skipgram for
he same corpus as the shallow–deep neural network is learn-
ng to map the context of the corpus to each available unique
ord, hence the fitting process is expected to be quicker with
ore features available in corpus’ context as the input layer. In
ddition, CBOW is expected to derive more effective representa-
ions for words that occur more frequently. Skipgram, however,
equires a longer training time with large text data, but can better
epresents less frequently occurring or rare words/sentences in
he corpus. The hyper-parameters adopted for both CBOW and
7

Table 2
Summary of hyperparameters’ values for Word2Vec algorithms (CBOW,
Skipgram) adopted in this study.
Hyper-parameters CBOW Skipgram

min-count 3 3
window-size 5 7
vector-size 100, 500, 5000 100, 500, 5000
no_of_workers 5 5

Skipgram in this study for analysing the corpus of processed
Tweet text are summarized in Table 2 for model reproducibility.
We note that the selected values for the min-count and window-
size hyper-parameters for CBOW and Skipgram algorithms are
based upon recommendations from the literature [39,40]. Hence,
the focus is to evaluate the varying orders of magnitudes in the
vector-size for the word representation, i.e., embedding layer, for
the combined corpus of extracted Tweets in the English language
as part of the features extraction analysis.

3.3. Development of ODANN prediction model

The encoded word representation, as derived from the ear-
lier discussed NLP features extraction methods (TfidfVectorizer,
CBOW, Skipgram,), are then leveraged as the high-level input
features layer for modelling the G parameter over time (see
Figs. 4 and 5) via deep learning methods. This study adopted a
personalized deep neural network (DNN) model with and without
data assimilation (ODANN) component based upon a rolling time-
window size for modelling and forecasting the G-parameter over
time since 25 January 2020 on the global scale.

3.3.1. DNN without data assimilation
The input features layers, as constructed from the Word2Vec

algorithms, adopted a pre-defined vector size for training a simple
DNN model (see Fig. 4), which has multiple hidden layers of
neurons inclusive of the final output layer of 1 neuron for mod-
elling the proposed G parameter on a daily basis (see details in
Table 3). Again, we note that the selected vector size for the input
layer, ranging among 100, 500, and 5000, does not represent the
number of unique words/vocabularies in the analysed corpus as
discussed earlier. A series of trial and error was thus performed
to determine the optimal size of model’s input layer which can
achieve the highest possible prediction accuracy between the
predicted and measured G values over time from the subsequent
testing step. Generally, a smaller vector size for the input features
layer aggregates the quantitative contextual relationship among
the different words, and vice versa, which usefulness depends on
the specific application. This remains to be further explored for
modelling the temporal G values on a daily basis via DNN. The
values for the batch size were also varied accordingly for tuning
DNN during its training phase as summarized in Table 3.

For TfidfVectorizer, however, the vector size for the DNN’s
input features layer is usually static and equates to the number
of unique words/vocabularies which amounts to 94,237 from the
present pool of combined corpus as extracted between 25 January
2020 and 11 May 2020. The contextual relationship among the
different words is thus not encapsulated in the constructed input
features layer using TfidfVectorizer since the size of the input
layer is directly built upon the number of unique words in the
corpus. The batch size hyperparameter was also tuned when
training DNN, as built upon the input layer constructed using
TfidfVectorizer features extraction method (see Table 3). Finally,
we again note that we maintained a minimum lead-time of 1 day
for the modelling step in all scenarios (different input layer sizes,
etc.). As another example, to forecast the G value for 31 March
2020 via a trained DNN prediction model, we leveraged on the
available Twitter data from 29 March 2020, hence maintaining
the 1-day lead-time.
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Fig. 4. Illustration of DNN model without data assimilation component to model proposed G parameter.
3.3.2. ODANN
Data assimilation into ODANN’s hidden layers, as illustrated

in Fig. 5, is achieved by leveraging on a rolling historical time-
window size, inclusive of the minimum lead-time of 1 day, which
merges the selected hidden layer with additional neurons as
representative of the actual G values from the previous days,
based upon the defined time-window. For example, with a 3-day
rolling time window (Gt−2,Gt−3,Gt−4), where the lead-time of 1
day is inherent, 3 additional neurons representing the respective
values for Gt−2,Gt−3,Gt−4 will then be concatenated with the
selected hidden layer from Fig. 3 to forecast the G value on the
current day itself (i.e., Gt ) via ODANN. In the case of forecasting
the G value on 25 January 2020, we leveraged on the historical
time records for the G parameter from 21–23 January 2020 for
the data assimilation step. The novelty of ODANN (Fig. 5) lies in its
capability to concatenate the encoded input features from large
volumes of COVID-19 related Twitter data and the historical time-
series records for the G parameter into a single end-to-end model
framework for near real-time predictions. Additional discussions
on the novelty aspect of ODANN to model the G-parameter in the
near real-time context will be provided in the later section.

In this study, we explored the rolling historical time-window
sizes of 3, 5, and 7 days for training the ODANN model with
the proposed data assimilation component. As part of the grid-
search process to optimize the initialized weightage values for
the hidden layers of ODANN, we define an optimization criteria
as: (i) estimated mean squared error (MSE) value must be lower
than 0.0100 (RMSE ≈ 0.1); and (ii) estimated mean squared
error (MAE) value must be lower than 0.100, during ODANN’s
validation step for the training scenarios with and without data
assimilation component, i.e. simple DNN model from Fig. 4.

3.4. Prediction performance evaluation

As discussed previously, to evaluate ODANN’s predictive ca-
pability (Figs. 4 and 5) during its training (with validation) and
testing steps, the following error metrics were adopted, namely:
(i) mean squared error (MSE) in Eq. (2); (ii) root mean squared
error (RMSE) in Eq. (3); (iii) mean absolute error (MAE) in Eq. (4).
We note that MSE was selected as the key cost function for the
model training step (see Table 2) to minimize the error difference
between the measured and simulated G values, while RMSE and
MAE were also computed at the same time for a comprehensive
analysis.

MSE =
1
N

N∑(
Gp,i − Gm,i

)2 (2)

i=1

8

RMSE =

√ 1
N

N∑
i=1

(
Gp,i − Gm,i

)2 (3)

MAE =
1
N

N∑
i=1

⏐⏐Gp,i − Gm,i
⏐⏐ (4)

where N is the number of data quantity being analysed, Gp,i the
predicted G value on a specific day (t = i), and Gm,i the measured
G value on the same day itself (t = i).

4. Computational experiments and results

4.1. ODANN’s model training configuration

The extracted and processed dataset, ranging between 25 Jan-
uary 2020 and 11 May 2020, had a total data quantity of 108
data instances on a daily basis. Training of ODANN is performed
with 85% of the total quantity, while the remaining quantity is
used for model testing. We note that within the 85% of data
quantity for model training, 20% is used for validating ODANN
during its training phase. In addition, we note that no random
shuffling of the original dataset is performed prior to splitting it
into components for model training, validation, and testing steps,
for the following reasons:

• Forecasting of the proposed G parameter for COVID-19
should be based upon extrapolation computations using the
optimized weights of ODANN’s hidden layers where they
have been trained, a priori, using continuous dataset for
the G parameter since the pandemic’s inception, and not
segmented discrete data points at separated timestamps.
We believe that modelling the continuous evolution of the
G parameter on a daily basis, with respect to the available
Twitter data made available in near real-time, can more
accurately forecast the growth rate in the confirmed number
of COVID-19 cases on a global scale.

• Building upon the near real-time requirement in ODANN’s
predictive capability, the forecasting of the G parameter, as
discussed in-detail previously, should be based upon Twitter
data being collated on a daily basis with a lead-time of 1 day
and a defined number of historical records for the same G
metric with respect to the modeller’s rolling time-window
size. Hence, the forecasting step by ODANN in the near real-
time context on any given day requires continuous influx of
big-data information, and not randomized sets of historical
datasets.
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able 3
ummary of hyperparameter values for training ODANN with and without data assimilation component.
Hyper-parameters ODANN DNN without

data assimilation

No. of neurons in hidden layer 1 6
No. of neurons in hidden layer 2 1
No. of neurons in hidden layer 3 Size of rolling time-window(e.g., number of neurons = 3 for 3 days’ time-window) Nil
No. of neurons in hidden layer 4 Size of rolling time-window(e.g., number of neurons = 3 for 3 days’ time-window) Nil
No. of neurons in output layer 1
Rolling time-window size 3, 5 & 7 days
Batch Size 2, 4, 6, 8, 12, 16
Number of Epochs 50
Learning rate 0.0001
Activation function for all hidden layers Exponential Linear Unit (ELU)
Optimization function Adam
Key cost function Mean Squared Error (MSE) – set criteria to be below value of 0.0100 for model validation step
Fig. 5. Illustration of ODANN model, with data assimilation component, to model proposed G parameter with rolling time-window size.
In summary, the computational protocol for training and val-
dating ODANN (coupled with Algorithm 1) to forecast, with and
ithout data assimilation, the global G parameter on any given
ay, i.e., Gt , with a lead-time of 1 day is summarized as follows:

• DANN without data assimilation: The proposed workflow
first constructs the required vectorized word representation
for the collated Twitter data from (t−2) day using either: (i)
TfidfVectorizer feature extraction method which resulting
vector size will be 94237; or (ii) CBOW or Skipgram feature
extraction method which resulting vector size can be 100,
500 or 5000. Then, the vectorized word representations
are fed as the input features layer for the simple DNN
model, as depicted in Fig. 4, to perform the model training
and validation steps using the listed hyper-parameters from
Table 3.

• ODANN with data assimilation: Perform identical input
features layer construction from that of ODANN without
data assimilation. Next, previous days of G values, as rep-
resented in one-dimensional (1D) arrays, for the required
data assimilation component are prepared based on the pre-
defined rolling time-window size. For example, a rolling
time-window size of 3 days will generate a 1D array size of
3 which compacts the G values from (t−2), (t−3), and (t−
4). Then, the vectorized data are assimilated into ODANN’s
hidden layer from Fig. 5 for the same model training and
validation steps. We note that selection of the specific hid-
den layer for the data assimilation step was determined
9

after a series of trial and error, and additional discussions
will be provided in the subsequent section. In the present
neural network design for simple DNN and ODANN from
Table 3 and Figs. 4 and 5 respectively, each model training
and validation run, pertaining to every combination of the
defined hyperparameters, required an average of 1 min for
completing their computations.

4.2. Analysis of prediction results for ODANN

This section presents a comprehensive comparison of the re-
sults derived from ODANN with and without data assimilation,
i.e. simple DNN. To ensure clarity to our readers, the follow-
ing details will be provided. Benchmarking was first performed
for DNN without data assimilation using the different types of
the NLP features extraction methods, as discussed earlier. The
optimized model configuration for the vector size of the input
features layer and the rolling time-window size, which can best
minimize the computed error metrics in Eqs. (2)–(4) from the
testing step of DNN without data assimilation, were subsequently
adopted for training and validating ODANN with data assimilation
component. The observed differences in the model’s resulting
predictive capability from the testing step using different model
configurations were also discussed. Finally, the best model con-
figuration for ODANN, with data assimilation component, was
then justified for its near real-time predictions of the proposed
G parameter.
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.2.1. Benchmark results from DNN without data assimilation
Without any data assimilation, Figs. 6 to 8 illustrate the best

omparison between the measured and predicted G values ob-
ained from the simple DNN design for its combined training,
alidation and testing steps, coupled with different types of NLP
eatures extraction methods built upon the respective optimal
atch size (from the grid-search step) adopted in this study.
eaders are also referred to Table 4 for the summary of the lowest
SE, RMSE, and MAE values computed from DNN’s combined

raining, validation, and testing steps using the optimal batch
izes coupled with the respective NLP features extraction meth-
ds. Generally, the benchmark results indicate the following key
indings.

• The vector size of the input features layer for the deep
learning model must be fine-tuned to best improve its level
of agreement, i.e., goodness-of-fit, between the predicted
and measured G values from the model’s testing step (see
Table 4). For example, Figs. 7 and 8 show that increasing
the vector size from 100 to 5000, using CBOW or Skipgram
feature extraction method, resulted in better fitting between
the measured and simulated G values from the model’s
testing step. On the contrary, Fig. 6 shows that a vector size
of almost 20 times bigger than that of Figs. 7c and 8c, re-
sulting from the TfidfVectorizer features extraction method,
will instead increase the overall error deviation between
the measured and predicted G values from the same testing
step. Therefore, the results indicate the need to determine
an optimal vector size for the model’s input features layer,
without data assimilation component, as depending on the
type of features extraction method being adopted a priori.

• Using Skip-gram as the features extraction method to build
the input features layer for the simple DNN model is likely
to overfit the measured G data as shown in Fig. 6, where
a low error score was achieved with the training dataset,
however, instead resulting in a high error score on the
testing dataset subsequently. Hence, the model was likely
to have overfitted the encoded input features from Skip-
gram on the training data for the proposed G parameter. For
comparison, it can be seen from Figs. 7 and 8 that CBOW and
Skip-gram, as belonging to Word2Vec algorithms, can most
likely mitigate the overfitting issue in the model’s combined
training, validation, and testing steps.

• Using Twitter data solely is unlikely to fully encapsulate the
complex dynamics inherent to the global growth rate of the
G parameter, hence indicating that the emotional responses
of the global community towards COVID-19 are coupled
with other unknown conditions controlling the spread of
COVID-19 globally. Further discussions will be provided in
the later section which can be useful to further underscore
the usefulness (and novelty) of the proposed ODANN model
with data assimilation component.

.2.2. Improved results from ODANN
Building upon the benchmark models, as described in the pre-

eding sub-section, data assimilation with the proposed ODANN
esign from Fig. 5 is then leveraged for the same modelling step.
ikewise, Figs. 9 to 15 illustrate the best comparison between
he measured and predicted G values using the different types
f NLP feature extraction methods with their respective optimal
atch size for the data assimilation component. Readers are also
eferred to Table 5 for the summary of the lowest possible MSE,
MSE, and MAE values computed from the model’s combined
odel training, validation, and testing steps using the optimal
atch sizes which corresponds to each of the NLP features extrac-
ion method used, coupled with data assimilation. As compared
o the previous benchmark results, the following key findings can

e summarized:

10
Fig. 6. Comparison between predicted and measured G values, using simple
DNN model, for 25 Jan 2020 to 11 May 2020 using TfidfVectorizer pre-processing
model with fixed vector size of 94,237.

• For all 3 NLP feature extraction methods used, the pro-
posed data assimilation component, as opposed to no data
assimilation, significantly improves the level of agreement
between the predicted and measured G values for the val-
idation and testing steps of ODANN under the different
combinations of batch size and rolling time-window size.
For example, comparing Figs. 6 and 9a under the same batch
size value of 2, there was a clear improvement in the level
of agreement between the predicted and measured G values
from the model’s testing step where the respective RMSE
value reduced from 0.0448 to 0.00603 by assimilating a 3
days’ rolling time-window for the historical G values.

• The current best agreement between the predicted and mea-
sured G values for the testing step of ODANN was achieved
by using the CBOW feature extraction method together with
the batch size of 2 and a rolling time-window size of 5 days
(see Fig. 11a) with respect to the historical G values for
the ODANN’s training phase. The best results indicate that
CBOW is generally more effective to quantitatively encap-
sulate the inherent context of the Tweets (and re-Tweets)
made by netizens towards COVID-19.

• Building upon the preceding pointer, the optimal rolling
time-window size of 5 days is likely to indicate a relatively
fast transformation of the pandemic’s behaviour over time.
The optimal batch sizes, as ranging between 2 and 6, for
CBOW and Skip-gram (Figs. 11a, 12a, and 13a) respectively
supports the observation that feeding smaller groups of
input features into the ODANN with data assimilation com-
ponent generally improved the model’s predictive accuracy
during its testing phase.

• Overall, a smaller vector size for ODANN’s input features
layer, as derived from either CBOW or Skip-gram features
extraction methods, can better capture the complex emo-
tional responses of the general population towards COVID-
19 and thus transforming them into more useful high-level
input features to maximize the model’s predictive accuracy,
i.e., lowering the MSE, RMSE, and MAE scores from the
testing phase of ODANN (see Table 5), as compared to using
larger vector size which can generally incur higher com-
putational time during the model’s training and validation
steps, especially if a larger model architecture is employed
for ODANN in future studies.

• If insufficient historical data records for the proposed G
parameter (≤ 3 days) are present in a hypothetical scenario,
the current results obtained indicate that using Skip-gram,
as the features extraction method, may be more effective
in generating more useful high-level input features (see
Fig. 13a) for ODANN as compared to that of CBOW. The latter
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Fig. 7. Comparison between predicted and measured G values, using simple DNN model, for 25 Jan 2020 to 11 May 2020 using CBOW NLP features extraction
ethod with varying vector size for input layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.
Fig. 8. Comparison between predicted and measured G values, using simple DNN model, for 25 Jan 2020 to 11 May 2020 using Skip-gram NLP features extraction
method with varying vector size for input layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.
able 4
ummary of lowest possible MSE, RMSE, and MAE values derived for DNN model’s validation and testing steps, without data assimilation component, using different
LP features extraction methods.
NLP features extraction method Batch size Vector size Error scores on validation dataset Error scores on testing dataset

MSE RMSE MAE MSE RMSE MAE

TfidfVectorizer 2 94237 0.000446 0.0211 0.0133 0.00201 0.0448 0.0442
CBOW 12 100 0.00854 0.0924 0.0562 0.000148 0.0122 0.0117
CBOW 4 500 0.00212 0.0460 0.0332 0.000337 0.0184 0.0160
CBOW 16 5000 0.00256 0.0506 0.0337 0.000221 0.0149 0.0116
Skip-gram 12 100 0.00858 0.0926 0.0564 0.000137 0.0117 0.0112
Skip-gram 4 500 0.00292 0.0540 0.0390 0.000538 0.0232 0.0222
Skip-gram 2 5000 0.00121 0.0347 0.0260 0.000231 0.0152 0.0122
4

method (CBOW) appears to better complement ODANN’s
predictive accuracy with additional historical data records,
i.e., greater than 3 days, as shown in Figs. 11a and 12a.

At this stage, we have shown that ODANN, coupled with
ata assimilation using a historical time-window size of 5 days,
hich input features layers (vector size = 500) built upon CBOW

eatures extraction method can best maximize model’s predictive
ccuracy, in terms of the resulting error scores, as summarized
n Table 5. For extensiveness in our proposed analysis, we in-
estigated varying sizes of the training and validation datasets
s part of cross-validating ODANN’s predictive capability from
ts training step. Traditionally, cross-validation for ML/DL models
equires randomizing the datasets for splitting into training, val-
dation, and testing subsets. However, in our present time-series
odelling for the proposed G parameter, we avoid shuffling the
vailable data pool ranging between 25 Jan 2020 and 11 May
020 for the same reasons as outlined earlier. Instead, our cross-
alidation analysis solely focuses on investigating the effects of
arying the sizes of the training (and validation) and testing
atasets into multiple combinations of: (i) 60% for training and
alidation, 40% for testing; (ii) 70% for training and validation,
0% for testing; (iii) 80% for training and validation, 20% for
esting; and (iv) 85% for training and validation, 15% for testing,
s listed in Table 6 while retaining the 5-days data assimilation
omponent, coupled with CBOW features extraction method, and
atch-size of 2 for the ODANN model. In summary, varying the
izes of datasets assigned for training (and validating) and testing

DANN indicated the following: t

11
• As expected, reduction of the data availability for training
and validating ODANN increases the resulting error scores
from the model’s testing step as shown in Table 6. The likely
reason is ascribed to the spike in the G value at around Day
60 (mid-March 2020) which causes the training model to
over-predict the remaining period after Day 60, especially
with smaller pools of training data as the model may learn
that G value is increasing continuously.

• On the contrary, the selection of 85% of the total available
data quantity for training and validating ODANN is expected
to optimize the model’s predictive capability (Tables 5 and
6) as the training data pool consists of 2 independent pe-
riods which demonstrated continuous rate of increase and
decline in the G values as illustrated in Fig. 3. Specifically,
the rate of increase in the G values occurred in the approxi-
mate periods of Day 0 to Day 5 and Day 40 to Day 60, while
the rate of decline occurred approximately during Day 10 to
Day 30 and Day 60 to Day 85. Hence, the data distribution
for the 2 contrasting dynamic behaviour in the proposed
G parameter over time is balanced to a significant extent
which benefits the model’s learning capability, especially
when coupled with the data assimilation component.

.3. Time-efficiency of proposed method

On any given day (e.g. 1 May 2020) in the near real-time con-

ext, with the defined lead-time of 1 day, our proposed method
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Fig. 9. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using TfidfVectorizer features extraction method with fixed vector
size of 94237 for ODANN, coupled varying rolling time-window sizes: (a) time-window = 3 days; (b) time-window = 5 days; (c) time-window = 7 days.

Fig. 10. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using CBOW features extraction method for ODANN with 3 days
rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.

Fig. 11. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using CBOW features extraction method for ODANN with 5 days
rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.

Fig. 12. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using CBOW features extraction method for ODANN with 7 days
rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.

Fig. 13. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using Skip-Gram features extraction method for ODANN with 3
days rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.

12
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Fig. 14. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using Skip-Gram features extraction method for ODANN with 5
ays rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.
Fig. 15. Comparison between predicted and measured G values for 25 Jan 2020 to 11 May 2020 using Skip-Gram features extraction method for ODANN with 7
ays rolling time-window, coupled with varying vector size for input features layer: (a) vector size = 100; (b) vector size = 500; (c) vector size = 5000.
able 5
ummary of lowest MSE, RMSE, and MAE values derived for ODANN, with data assimilation component, using different NLP features extraction methods.
Rolling time-window NLP features extraction method Batch size Vector size Error scores on validation dataset Error scores on testing dataset

MSE RMSE MAE MSE RMSE MAE

3 days

TfidfVectorizer 2 94237 0.000221 0.0149 0.00697 0.0000360 0.00603 0.00444
CBOW 2 100 0.00195 0.0442 0.0195 0.0000180 0.00425 0.00314
CBOW 6 500 0.00150 0.0387 0.0190 0.0000250 0.00497 0.00411
CBOW 4 5000 0.00117 0.0343 0.0176 0.0000210 0.00454 0.00358
Skip-gram 6 100 0.00124 0.0352 0.0177 0.0000130 0.00361 0.002972
Skip-gram 4 500 0.00127 0.0356 0.0181 0.0000190 0.00434 0.00369
Skip-gram 6 5000 0.00112 0.0334 0.0166 0.0000250 0.00500 0.00395

5 days

TfidfVectorizer 8 94237 0.000237 0.0154 0.00728 0.0000610 0.00781 0.00620
CBOW 2 100 0.000814 0.0285 0.0153 0.00000829 0.00288 0.00225
CBOW 2 500 0.000621 0.0249 0.0111 0.0000080 0.00282 0.00214
CBOW 8 5000 0.000588 0.0242 0.01118 0.0000130 0.003552 0.00295
Skip-gram 2 100 0.00104 0.0322 0.0150 0.0000150 0.00387 0.00287
Skip-gram 16 500 0.00155 0.0394 0.0218 0.0000210 0.00460 0.00325
Skip-gram 4 5000 0.000613 0.0248 0.0127 0.0000110 0.00327 0.00273

7 days

TfidfVectorizer 16 94237 0.000527 0.0230 0.00983 0.0000310 0.00559 0.00476
CBOW 4 100 0.000401 0.0200 0.0122 0.00000918 0.00303 0.00247
CBOW 8 500 0.00100 0.0317 0.0188 0.0000220 0.00470 0.00373
CBOW 6 5000 0.000781 0.0279 0.0145 0.0000210 0.00458 0.00386
Skip-gram 4 100 0.00117 0.0342 0.0170 0.0000200 0.00447 0.00363
Skip-gram 6 500 0.00102 0.0320 0.0147 0.0000230 0.00483 0.00412
Skip-gram 12 5000 0.00130 0.0361 0.0189 0.0000210 0.00453 0.00374

Note: The values in bold indicate the best prediction model with the specific rolling time-window.
Table 6
Summary of cross-validating ODANN with varying sizes of training, validation, and testing datasets from original data pool ranging between 25 Jan 2020 and 11 May
2020.
Training & Validation data size Testing data size Error scores on validation dataset Error scores on testing dataset

MSE RMSE MAE MSE RMSE MAE

60% 40% 0.00122 0.0349 0.0218 0.0000157 0.00396 0.000305
70% 30% 0.00101 0.0318 0.0180 0.0000130 0.00361 0.000279
80% 20% 0.000856 0.0293 0.0153 0.0000110 0.00332 0.000256
85% 15% 0.000621 0.0249 0.0111 0.0000080 0.00282 0.000214
consists of the following sequential steps: (Data Hydration) ex-
ractions of COVID-19 Twitter text data from a pool of Tweets IDs
ollated from the relevant historical day coupled with the inher-
nt 1 day lead-time (e.g. 29 April 2020); (Data Pre-Processing)
ncoding of the extracted text data from the relevant historical
13
day into numerically useful input features layer having an optimal
vector size (e.g. input layer of 500 neurons in size); (Trained
Model Restoration) calling upon the pre-trained ODANN model
which takes in the encoded input features layer while also assim-
ilating with historical G values, based on the pre-defined rolling
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able 7
ummary of average computational runtime for each key step in proposed
ethod in near real-time context.
Step Average

runtime

Data hydration (∼1 million of COVID-19 Twitter text data daily) 6 h
Data pre-processing to derive input feature layer 20 min
Trained model restoration 20 s
Model predictions using input feature layer, coupled with data
assimilation

10 s

time-window size (e.g. 5 days), to forecast the G-value on the
given day in near real-time. Table 7 summarizes the average com-
putational runtime for each of the key steps in the near real-time
context. The listed runtimes in Table 7 show that data hydration
requires the longest time to be completed, where the remaining
steps can be accomplished with a good efficiency. At this stage,
we have not explored any forms of data parallelism to accelerate
the computational runtime, especially for the data hydration. This
remains to be explored in our continual experiments in future
studies. Overall, the total runtime to perform all steps listed in
Table 7 takes an average of 6.4 h maximum on any given day in
near real-time, hence the imposition of the lead-time of 1 day is
more than sufficient to ensure that predictions of G-value on the
given day can be performed with both efficiency and accuracy.

5. Discussions

5.1. Comparison of ODANN with alternative time-series models

To further validate the effectiveness of ODANN with its data
ssimilation component, several comparative experiments were
erformed with classical time-series prediction models or ML al-
orithms to forecast the same G parameter over time. In addition,
he robustness of ODANN was further tested by setting different
ercentages of random missing quantities in the datasets for the
ombined model training, validation, and testing steps. In the
ollowing, we first discuss on the comparison analysis of ODANN
ith the other time-series models.
On a whole, the proposed ODANN model yielded the most

atisfactory results in forecasting the G values over time, with
defined lead-time of 1 day, under the evaluation metrics of
SE, RMSE, and MAE. For an extensive comparison, several can-
idates, including ARIMA, AutoARIMA, Prophet, Random Forest
RF), Support Vector Machine (SVM), and Long Short-Term Mem-
ry (LSTM) algorithms [41] were also leveraged to perform the
ame combined training, validation, and testing phases, i.e. 85% of
he total data quantity for model training and validation, and 15%
or model testing, to directly model the dynamic behaviour of the
roposed G parameter over time. However, without considering
ny Twitter data as representative of the general community’s
motional responses towards the current pandemic, they still
aintaining the same lead-time of 1 day to forecast the G value
n any given day between 25 January 2020 and 11 May 2020. The
esulting prediction performances derived from the alternative
ime-series models on the testing dataset are summarized in
ig. 16 and Table 8, while Tables 9a and 9b summarize the sta-
istical comparison results between ODANN and the alternative
ime-series models on the same testing dataset.

The statistical analyses are namely, Type 1 paired T-test,
ruskal–Wallis test, andWilcoxon Signed Rank test, which mainly
nvolve the p-value computations, as summarized in Table 9a,
to estimate the probability of obtaining the results that are at
least as extreme as the results actually observed, under the
assumption that the respective null hypothesis is correct while
assuming a significance value of 0.05; Type 2: Pearson correlation
14
oefficient, Spearman correlation coefficient, and Kendall’s tau,
hich focus on estimating different coefficient values, ranging
etween 0 and 1 as summarized in Table 9b, which quantify the
evel of association between 2 sets of time-series predictions.
n summary, the statistical analyses in both Tables 9a and 9b
ndicate the following:

• Paired T-test: The null hypothesis is that the predictions
from ODANN, on the testing dataset, have identical average,
i.e. expected, values with that of the other alternative time-
series models. The summarized p-values in Table 9a for the
t-test indicate that the average values of the predictions
from RF, SVM, ARIMA, and AutoARIMA model were most
similar to that of ODANN’s since their p-values are greater
than 0.05, while the average values of the predictions from
LSTM and Prophet differed significantly in their average
values as the null hypothesis can be rejected with p-values
less than 0.05.

• Kruskal–Wallis test: The null hypothesis is that the me-
dian value of the predictions from ODANN, on the testing
dataset, was equal to that of the other alternative time-
series models. The summarized p-values in Table 9a for the
Kruskal–Wallis test indicate that the median value of the
predictions from ARIMA, AutoARIMA, RF, SVM and LSTM
models were most similar to that of ODANN’s since their p-
values are greater than 0.05, while the median value of the
predictions from Prophet differed significantly as the null
hypothesis can be rejected with p-values less than 0.05.

• Wilcoxon Signed Rank test: The null hypothesis is that the
predictions from ODANN, on the testing dataset, have the
same data distribution from that of the other alternative
time-series models. The summarized p-values in Table 9a for
the Wilcoxon Signed Rank test indicate that the predictions
from RF, SVM, ARIMA and AutoARIMA had the most similar
distribution to that of ODANN’s since their p-values are
greater than 0.05, while the predictions from the remaining
models differed significantly in their data distribution as
the null hypothesis can be rejected with p-values less than
0.05. Specifically, the respective distributions for the time-
series differences between the predictions from LSTM or
Prophet, with that of ODANN were not symmetric about the
zero-value point.

• Pearson correlation coefficient: Measures the level of lin-
ear relationship between the predictions from ODANN, on
the testing dataset, and that of the other alternative time-
series models. The summarized coefficient values in Ta-
ble 9b for the Pearson correlation analysis indicate that the
predictions values derived via the LSTM method had the
closest linear relationship, however not necessarily identi-
cal, with that of ODANN due to its highest 0.839 coefficient
value. The other coefficient values suggest that the predic-
tions from the remaining models generally do not correlate
linearly, to a significant extent, with that of ODANN’s.

• Spearman correlation coefficient: Measures the mono-
tonicity of the relationship between two datasets. Simi-
lar conclusion from the preceding Pearson coefficient can
also be made when using the Spearman correlation co-
efficient (see Table 9b), where the predictions from the
LSTM model had the closest positive monotonic relation-
ship with that of ODANN’s when using the testing dataset.
Overall, the predictions from Prophet had the lowest mono-
tonic correlation with that of ODANN’s on the same testing
dataset. Additional discussion on Prophet’s result will be
made subsequently.

• Kendall’s tau: The Kendall’s tau value measures the corre-
spondence between ODANN’s predictions, using the testing
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dataset, and the corresponding predictions from the other
time-series models. Overall, the computed tau values indi-
cate that no significant strong agreement exists between
the predictions made by ODANN and the other time-series
models on the same testing dataset. Relatively, only the
predictions from LSTM had the closest agreement with that
of ODANN.

• Overall, the above-discussed statistical analyses indicate
that there is no universal statistical analysis test capable of
pre-determining which time-series model can generate test
predictions to best match with that of ODANN. Each test
serves a different objective, as depending on the context of
the problem. Using the RMSE and MAE scores summarized
in Table 8, the test predictions from SVM can best match
with the predictive accuracy of ODANN, and the computed
scores for Paired T-test, Kruskal–Wallis test, and Wilcoxon
Signed Rank test (Table 9a) indicate that SVM’s predictions
were consistently similar with that of ODANN’s in terms
of the average (expected), median, and data distribution
parameters. However, we note that the latter model still
outperformed SVM in the final prediction accuracy, i.e., min-
imizing the RMSE and MAE scores, when using the same
testing dataset.

As illustrated in Fig. 16, the trend of the prediction curves deriv-
ing from the alternative time-series models, with the exception of
Prophet, was reasonably consistent with the measured G values
(ground truth), which suggests that the alternative models can be
reasonably useful in forecasting the growth rate in the number
of confirmed COVID-19 cases on a global scale. The compared
results listed in Table 8 reveal the following ranked prediction
performance of the 6 alternative time-series models: ODANN >
SVM > ARIMA > LSTM > RF > AutoARIMA > Prophet. With
the present dataset, ODANN outperformed the other traditional
models with at least 0.00100 reductions in the average RMSE and
MAE values, respectively, hence indicating ODANN’s capability
to better encapsulate the growth trajectories of the analysed G
parameter over time. The results also highlighted the likelihood
that the community’s emotional responses towards the pandemic
do affect, to an extent, the temporal variations of the G param-
eter since its inception, especially when coupled with the data
assimilation component in ODANN. Therefore, there are valu-
able knowledge embedded in the extracted high-level features
using the different NLP features extraction methods, which can
potentially offer useful guidance to the different stakeholders to
obtain more accurate predictions pertaining to the proposed G
parameter.

On the other hand, we note that Prophet generally performed
less satisfactorily as compared to the other models, inclusive
of ODANN, due to the need for the training dataset to have
some level of seasonality component, whether is it daily, weekly,
monthly or yearly in nature. At this stage, it is obvious that
the time-series profile for G parameter (see Fig. 3) do not quite
follow any seasonal trends due to the relatively small dataset
being analysed at this stage, hence it is difficult for Prophet
algorithm to capture any observable seasonal trends during its
training phase. As discussed, the rate of increase in the G values
occurred in the approximate periods of Day 0 to Day 5 and Day
40 to Day 60, while the corresponding rate of decline occurred
approximately during Day 10 to Day 30 and Day 60 to Day 85,
hence there was no strong seasonality or trend components in
the variations of the G parameter over time with the present
dataset. We would, however, expect that the Prophet model can
improve on its present predictive accuracy with a larger data pool
for the combined model training, validation, and testing steps in
any future works as more data is being made available. Finally, it

is worth noting that the same results observations have also been
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Table 8
Evaluation of predicted results from ODANN, ARIMA, AutoARIMA, RF, SVM, LSTM,
and Prophet time-series models using the testing dataset.
Model Parameter RMSE MAE

ARIMA Order (1, 1, 1) 0.00412 0.00336

AutoARIMA Order (0,1,1)(3,1,1)
Daily seasonality

0.00639 0.00468

RF Number of trees = 8
Maximum depth of the tree = 4

0.00447 0.00358

SVM Kernel = ‘rbf’
Regularization parameter = 10
Epsilon = 0.001

0.00388 0.00315

LSTM Number of hidden layers = 1
Number of neurons = 10

0.00430 0.00356

Prophet Width of the uncertainty intervals = 0.95
No. of simulated draws for uncertainty
intervals = 35
Growth = linear
Daily seasonality

0.0300 0.0294

ODANN Input features layer (via CBOW) = 500
Epochs = 50
Batch size = 2
Rolling time-window size (data
assimilation) = 5 days

0.00282 0.00214

reported by recent studies [42,43] where the authors’ Prophet
model performed less ideally as compared to that of the other
time-series models such as ARIMA, TBAT, etc., in modelling and
forecasting the transmission rate of COVID-19.

ODANN consistently achieved the highest predictive accuracy
from its testing step, even when random missing values were
added into the dataset. Missing data commonly occurs during
data collection/collation, which can generally reduce the overall
representation of the samples and even cause biased estima-
tions. Therefore, it is important to investigate how the proposed
ODANN model, coupled with data assimilation component, and
the other alternative time-series models respond to different
percentages of missing data in their respective prediction task.
To set the missing data condition, we randomly dropped 10%,
20%, and 30% of the G values data from the original dataset, and
then simply filled out the corresponding missing values using its
available previous day of observed G value. For the computational
experiments, we randomly generate 30 combinations for each
of the above-listed missing percentages of the data points for
the G value. After the required data imputations for each of the
combination, we maintained the same respective optimal model
configurations, as listed in Table 8, for each of the time-series
model, inclusive of ODANN, to forecast the same G parameter
over time with the same lead-time of 1 day. Note that ODANN
still leveraged on the optimal batch size of 4, input features layer
size of 500 for CBOW features extraction method, and a rolling
time-window size of 5 days for assimilating the historical time
records for the G parameter to perform the prediction step.

Tables 10 and 11 summarizes the average RMSE and MAE
scores, coupled with their standard deviation values (also see
Figs. 17 and 18), computed for all time-series models from the 30
random combinations for each of the missing data percentages
as shown. As expected, the accuracy gradually reduced with an
increasing amount of missing data. Under the condition of 10%
missing data, ODANN remained more accurate in its predictions
on the testing dataset, with RMSE and MAE scores of 0.00315 and
0.00246 respectively, as compared to that of the other models.
Both computed scores were generally lower than the 2nd lowest
corresponding values attained from the SVMmodel (the next best
prediction model). As the percentage of missing data increased,
the comparative differences for the RMSE and MAE between
our proposed model and SVM, however, reduced gradually as
shown in Tables 10 and 11. Notwithstanding the missing data
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Fig. 16. Prediction of G value on the testing dataset using ODANN, ARIMA, AutoARIMA, RF, SVM, LSTM, and Prophet time-series models.
able 9a
ummary of p-values to compare ODANN with other time-series models for predictions on testing dataset by assuming significance value of 0.05.
Statistical analysis method RF SVM ARIMA LSTM AutoARIMA Prophet

Paired T-test 1.36E−01 5.20E−02 5.83E−02 2.33E−02 1.68E−01 6.95E−17
Kruskal–Wallis test 4.97E−01 1.51E−01 1.41E−01 5.80E−01 3.33E−01 2.89E−08
Wilcoxon signed rank test 1.79E−01 9.58E−02 8.88E−02 3.19E−02 3.38E−01 9.54E−07
Table 9b
Summary of correlation coefficient values to compare ODANN with other time-series models for predictions on testing dataset.
Statistical analysis method RF SVM ARIMA LSTM AutoARIMA Prophet

Pearson correlation coefficient 6.77E−01 5.89E−01 6.74E−01 8.48E−01 3.71E−01 2.36E−01
Spearman correlation coefficient 5.76E−01 5.26E−01 6.01E−01 7.22E−01 4.04E−01 1.29E−01
Kendall’s tau 4.20E−01 3.61E−01 4.23E−01 5.54E−01 3.04E−01 1.06E−01
quantity for the random combinations, ODANN appeared to pro-
vide the highest accuracy capability with the lowest RMSE and
MAE average values after the 30 experiments for each of the
missing data percentages investigated. In all missing data scenar-
ios experimented, there was no obvious change in the resulting
accuracy of ARIMA and SVM, hence indicating the convergence
in the predictive accuracy of the models. On the contrary, it can
be observed from their corresponding length of the plot boxes
(Figs. 17 and 18) and computed standard deviation values that RF,
LSTM, AutoARIMA, Prophet, and ODANN generally experienced
more fluctuations, hence their prediction results may encompass
greater level of uncertainty. This, however, can be appropriately
addressed by running more random combinations of the missing
data percentages in the future studies.

5.2. Novelty of ODANN model

We further demonstrate the novelty of ODANN model by con-
idering the proposed model’s capability to assimilate additional
ata features of any pre-defined characteristics into the optimal
ocations of the available hidden layers within the DNN model.
reviously, we have shown the effectiveness of assimilating 5
ays of historical time-records, i.e. (t−2, t−3, t−4, t−5, t−6),
or the G parameter with the inherent lead-time of 1 day, where
e can best minimize the RMSE and MAE scores as compared
o the other time-series models as summarized in Table 8. To
urther improve on ODANN’s predictive accuracy to forecast the
parameter on a given day, we consider the scenario where we

ssimilate ODANN’s hidden layers with relevant socioeconomic
actors and restrictive government policies pertaining to COVID-
9 for the same modelling step. The additional factors to be
16
considered are listed in Table 12 for the same period between
25 January 2020 and 11 May 2020. For all factors, except for
the government stringency index, they are typically represented
as non-discrete values, i.e. not time-series continuous values, as
shown in Table 12. Hence, we normalize the classes into discrete
values via Equation (5) which considers the data distribution
among the different classes.

X =
X − µ

σ
(5)

where X represents the normalized class discrete value, X is the
class score (e.g. Class 1, 2, 3, etc.), µ the mean class value, and
σ the standard deviation of the class scores for the respective
factor/policy. We note that the government stringency indexes
are also normalized via Equation (5) to ensure similar scaling
values for all considered input data features.

Fig. 19 illustrates the design of ODANN to concurrently assimi-
late the historical time-series records for the G parameter and the
listed socioeconomic factors and restrictive government policies,
based upon the defined rolling time-window size, to model and
forecast the G value on any given day with a lead-time of 1 day.
We again maintain the same optimal model configuration (batch
size = 2, input features layer size = 500, CBOW features extrac-
tion method, rolling time-window size = 5 days) to perform the
new scenario of assimilating the additional data features from
Table 12 for the modelling step. For example, by adhering to the
same rolling time-window size of 5 days, the total number of
new neurons for assimilating the additional data features into the
selected hidden layer of ODANN equates to 55 as shown in Fig. 19.
The same model training (and validation), and testing datasets of
85% and 15% respectively, are also maintained for the analysis.
By including the additional data features, we can further reduce
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Table 10
Comparison of RMSE under different percentage of missing data.
Method RMSE under different percentages of missing data

10% 20% 30%

ARIMA 4.19E−03 (±3.37E−05) 4.21E−03 (±3.71E−05) 4.23E−03 (±4.88E−05)
AutoARIMA 7.96E−03 (±2.67E−03) 8.05E−03 (±3.62E−03) 9.35E−03 (±3.89E−03)
RF 4.69E−03 (±5.88E−04) 4.76E−03 (±5.51E−04) 4.99E−03 (±6.15E−04)
SVM 4.11E−03 (±1.57E−04) 4.13E−03 (±1.82E−04) 4.21E−03 (±2.33E−04)
LSTM 4.22E−03 (±6.30E−04) 4.46E−03 (±7.17E−04) 4.48E−03 (±7.75E−04)
Prophet 3.16E−02 (±3.66E−03) 3.21E−02 (±6.17E−03) 3.32E−02 (±7.25E−03)
ODANN 3.15E−03 (±1.60E−03) 4.10E−03 (±2.17E−03) 4.29E−03 (±6.13E−04)
Table 11
Comparison of MAE under different percentage of missing data.
Method MAE under different percentages of missing data

10% 20% 30%

ARIMA 3.44E−03 (±3.98E−05) 3.45E−03 (±2.19E−05) 3.46E−03 (±6.23E−05)
AutoARIMA 6.66E−03 (±2.20E−03) 6.93E−03 (±3.47E−03) 8.09E−03 (±3.44E−03)
RF 3.53E−03 (±3.82E−04) 3.58E−03 (±3.87E−04) 3.64E−03 (±4.08E−04)
SVM 3.32E−03 (±1.32E−04) 3.33E−03 (±1.71E−04) 3.36E−03 (±2.06E−04)
LSTM 3.50E−03 (±6.34E−04) 3.61E−03 (±7.76E−04) 3.69E−03 (±7.73E−04)
Prophet 3.07E−02 (±3.76E−03) 3.13E−02 (±6.40E−03) 3.22E−02 (±7.46E−03)
ODANN 2.46E−03 (±1.32E−03) 3.30E−03 (±2.08E−03) 3.34E−03 (±5.79E−04)
Fig. 17. Boxplot of RMSE under different percentages of missing data: (a) 10%; (b) 20%; (c) 30%.
Fig. 18. Boxplot of MAE under different percentages of missing data: (a) 10%; (b) 20%; (c) 30%.
he original RMSE and MAE scores (from Table 8) for ODANN to
round 0.002000 and 0.00154 respectively, hence improving the
odel’s predictive accuracy for the near real-time predictions.
verall, the novelty of our proposed ODANN can be summarized
s follows:

• The current model design of ODANN is built to enable di-
verse data components to be fused systematically and ef-
fectively, as part our data assimilation/fusion step, hence
preventing any data component to outweigh the others. For
example, we avoid directly assimilating the encoded se-
mantic word representations derived from the Twitter data,
having the defined vector size, into the same hidden layer
17
as that of the historical time-records for the G parameter
due to the differing scales in their respective 1D array sizes.
The vector size for the encoded Twitter data and assimilated
historical time-records for the G parameter are in the order-
ing scales of O

(
101

− 103
)
and O

(
100

)
, hence the differing

scales are likely to exert more weights on the encoded
Twitter data during the training phase of ODANN when
both are fused directly together. Therefore, the derived word
representation (1D array) is instead leveraged as the input
features layer for ODANN which enables the systematic
aggregation of the original word vectors into higher-level
useful features of smaller vector sizes (as shown in Figs. 5
and 19), along the depth of the ODANN model, having the
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Fig. 19. Illustration of ODANN to assimilate historical time-series records for G
parameter and other socioeconomic factors and restrictive governmental policies
(from Table 11) for any given rolling time-window size.

same scaling as that of the assimilated data features at
the selected hidden layer of ODANN in Fig. 19. By doing
so, we have shown that we can maximize the predictive
accuracy of ODANN on the testing dataset for forecasting the
G parameter with a lead-time of 1 day.

• In this latest scenario, we demonstrate the flexibility of
ODANN to assimilate other important data features (from
Table 12) which can be useful to enhance its predictive ac-
curacy, while ensuring a well-balanced weights distribution
among the different types of data features. While the num-
ber of assimilated neurons for the additional socioeconomic
factors and restrictive government policies may exceed the
number of assigned neurons for the aggregated word vectors
and the historical time-series records for the G parameter,
we highlight that each data feature in Table 12 is actually
a unique parameter by itself hence there is still no one
singular parameter being placed more significance than the
others. Going forward, as more data is being available to the
community which include new data features (vaccination
rates, environmental factors, etc.), the present design of
ODANN can easily assimilate those new features to perform
the same modelling analysis with equal efficiency.

• While the design of ODANN may be relatively straightfor-
ward from neural network research, the better agreement
achieved from ODANN as compared to other time-series
models, as summarized in Tables 8, 10 and 11, clearly under-
line the effectiveness of our proposed workflow/approach by
having a singular end-to-end network model to concomi-
tantly process complex semantic word vectors, as repre-
sentative of the society’s emotional responses towards the
pandemic, and a multitude of socioeconomic and govern-
mental factors in a single-shot learning and validation pro-
cess. Accuracy and computational efficiency have both been
achieved with ODANN, and we are hopeful that the same
workflow and model design can be extended to other do-
main problems which models a target objective as function
of multiple data features of varying characteristics.
18
5.3. Comparison of ODANN with previous research studies

Besides comparing ODANN with other time-series prediction
models as explained qualitatively and quantitatively in the pre-
ceding sub-section, we further validate the predictive accuracy
of ODANN with recent similar notable studies [42–46], which
too focused on forecasting the transmission rate of COVID-19,
in terms of the number of confirmed COVID-19 cases, since the
virus’ inception. In the following, we outlined the key method-
ologies and reported results by the previous studies [42–46], for
comparison with our proposed ODANN model and its prediction
results.

Kumar and Susan [42] too leveraged on ARIMA and Prophet
time-series prediction models to model the temporal data of
COVID-19 spread worldwide, and for several countries in the dif-
ferent continents, for the period between 22 January 2020 and 20
May 2020. Overall, the authors demonstrated that ARIMA model
was generally more effective for forecasting the prevalence rate
of COVID-19, which too aligned with our present study where we
have shown that ARIMA/AutoARIMA had resulting error scores
(RMSE and MAE) which were a magnitude smaller than that
of Prophet as previous summarized in Table 8. A more similar
study in using social media to forecast the virus outbreak with
neural ordinary differential equations (ODEs) was performed by
Núñez et al. [44]. The authors’ data comprised of a massive
amount of online surveys, regarding COVID-19 symptoms, via
Facebook to train and validate the authors’ personalized neural
ODE, followed by using the trained neural ODE to forecast the
virus’ outbreak rate in different US states for up to sixty days.
No error metric scores were reported by the authors in their
published paper, however, a visual inspection of their temporal
plots for comparing their model’s predictions and the respec-
tive monitored data during the extrapolation phase, i.e. model
testing, indicates some level of differences between both sets
of data. In addition, the authors did not extend their prediction
model for the forecasting on the global scale. A more aggregated
analysis was carried out by Yousefinaghani et al. [45] to detect
spikes/waves in the number of confirmed cases in the United
States and Canada using social media data and Google searches
online. Their adopted lead-time adopted ranged between 1 and
2 weeks which can be useful to decision-makers to early detect
any possible spikes, however, the authors did not specifically
investigated or reported on the number of false positive (FPs)
forecasted hence the exact precision of their method is still not
known at this stage. Overall, there are currently limited studies
reported in the current literature which leverages on the big-data
availability on social media (Facebook, Twitter, etc.) to model and
forecast the actual number of reported/confirmed COVID-19 cases
globally, as presented in our present study.

The remaining 2 previous studies [43,46] provided a more
comprehensive comparison with our present results attained
from ODANN. We first note that each of the studies, inclusive
of ours, models the growth rate in the number of confirmed
COVID-19 cases globally via different means. Papastefanopoulos
et al. [43] modelled the number of active cases per unit popu-
lation size in the top 10 countries having the largest number of
reported COVID-19 cases as of 4 May 2020. The countries include
the United States (US), Spain, Italy, United Kingdom (UK), France,
Germany, Russia, Turkey, Brazil, and Iran. Their study is selected
for comparison since the above-listed countries encompass the
most significant portion (>70%) of the confirmed COVID-19 cases
globally, which has also been underlined by the authors in their
paper. They reported the respective predictive performance using
different time-series prediction models (ARIMA, Prophet, HWAAS,
NBEATS, Gluonts, and TBAT) for the 10 listed countries by com-
puting the RMSE score (same of Eq. (3)) based on the predictions
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T
L

able 12
ist of socioeconomic factors and restrictive government policies for additional data features assimilation into ODANN.
Type Data features Value range

Socioeconomic

Level of income support 3 classes (no support, support >50% loss salary, support <50% loss salary)

Level of debt relief 3 classes (no relief, moderate relief, large relief)

Face covering 5 classes (no policy, recommended, required in some public places, required
in all public places, always required outside of homes)

Cancellation of public events and gatherings 3 classes (no cancellations, recommended cancellations, compulsory
cancellations)

Testing and contact tracing 4 classes (no testing, testing for those with symptoms and belonging to
higher-risk groups, testing for anyone with symptoms, open public testing)

Public information campaigns 3 classes (none, public officials urging caution, coordinated information
campaigns)

Restrictive government policies
Government stringency index 0–100 (100 being the highest stringency score)

Schools and workplaces closures 4 classes (no closures, recommended, recommended at some levels, required
at all levels)

Stay-at-home restrictions 4 classes (no measures, recommended, required except for running essentials,
required with few exceptions)

Controls for domestic travels 3 classes (no measures, recommended movement restrictions, restricted
movement)

Controls for international travels 5 classes (no measures, screening, quarantine from high-risk countries, ban on
high-risk countries, total border closure)
made from their model testing step using data instances between
28 April 2020 and 4 May 2020. Table 13 summarizes the RMSE
scores from each of their method used, where the respective
RMSE score, as shown in the table, represented the average of all
10 countries combined from the authors’ model testing step. Our
updated RMSE scores in Table 13 were based upon same the same
working principles as that of [43] where we re-normalized the
reported and forecasted confirmed number of COVID-19 cases,
from our prediction step using ODANN, by the total world popu-
lation (≈ 7.67 billion people as of 2020/2021) for the same period
analysed by the authors. We note that prior de-normalization of
the predicted and reported G values were performed by using the
inverse version of Eq. (1). Also, the de-normalization step was
carried out after the predictions were made on the proposed G
parameter using our ODANN model, as previously summarized
in the preceding section(s). By performing the appropriate esti-
mations, we can then better compare and evaluate our model
performance from ODANN’s with that of [43] in the same or-
dering scale. The listed RMSE scores in Table 13 show that our
proposed ODANN, with the optimized model configuration (5
days rolling time-window size, 500 neurons for input layer, etc.)
is more likely to perform better than the other time-series models
from the previous study, and also in our current analysis from
Table 8 as demonstrated earlier, when modelling the contributory
influences of large-scale social media data as the input features
layer to ODANN, and also assimilating with the historical records
for the G parameter and/or other important socioeconomic and
governmental factors/data if necessary.

On the other hand, Petropoulos et al. [46] adopted a simpler
time-series model, namely the non-seasonal multiplicative er-
ror and multiplicative trend exponential smoothing model (ETS-
MMN), by modelling and forecasting the global numbers of con-
firmed COVID-19 cases and deaths with different number of
horizons, i.e. lead-times. We focused on their results derived from
the 1-day horizon to match with our present analysis due to the
inherent lead-time of 1 day adopted to perform the required pre-
dictions. The authors leveraged on the mean absolute percentage
error (MAPE) score, as defined in Eq. (6), to evaluate their fore-
casting results for the period between 10 February 2020 and 30
May 2020 using different time horizons. For example, a 10-days
horizon indicates that the predictions were made on 10 February
2020, 20 February 2020, etc., with a 10 days interval. By far, their
MAPE score for the period of May 2020, which aligned with the
19
Table 13
Comparative analysis of ODANN’s predictive accuracy with previous studies.
Method RMSE MAPE

ARIMA [43] 1.75E−02

-Nil-
Prophet [43] 3.00E−02
HWAAS [43] 2.40E−02
BNEATS [43] 2.11E−02
Gluonts [43] 4.45E−02
TBAT [43] 6.99E−03
Simple-time series model [46] -Nil- 0.200%
ODANN w/o SEGa factors (optimized configuration) 3.45E−03 0.205%
ODANN with SEGa factors (optimized configuration) 2.63E−03 0.154%

aSEG factors represent socioeconomic and governmental restrictive poli-
cies/factors.

dates for the testing phase of ODANN in our present study, was
reported to be approximately 0.200% with the 1-day time horizon.
To better compare and evaluate ODANN’s predictions with that
of [46], we again de-normalized the reported and predictions
values made from ODANN by again using the inverse version
of Eq. (1), followed by computing the appropriate MAPE scores
using Eq. (6). Again, we note that the de-normalization step was
carried out after the predictions were made on the proposed
G parameter using ODANN. Overall, we can observe that the
predictions derived from the simpler time-series model as pro-
posed by Petropoulos et al. can match almost exactly with that of
our ODANN model with the data assimilation component, where
their computed MAPE scores were almost identical as shown in
Table 13. However, by fusing with data features pertaining to
the socioeconomic and governmental factors, the resulting MAPE
score from ODANN can be reduced further by around 0.045%,
hence improving the forecasting step.

MAPE =
1
N

N∑
i=1

⏐⏐Gp,i − Gm,i
⏐⏐

Gp,i
× 100% (6)

6. Conclusions and future works

In this paper, we have developed a hybrid deep learning
model, termed as ODANN, which effectively combines features
extraction methods, via natural language processing (NLP), and
data assimilation concept to accurately predict the daily growth
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ate in the number of confirmed COVID-19 cases globally, via
proposed G parameter, with a lead-time of 1 day. NLP fea-

ures extraction methods were leveraged to pre-process large
olumes of Twitter data (100 million in exceedance) to derive
igh-level semantic word vectors to quantify the general com-
unity’s emotional responses towards the current pandemic.
oupled with data assimilation, we demonstrated that ODANN
an outperform traditional time-series models, including ARIMA,
F, SVM, LSTM, AutoARIMA, and Prophet, in forecasting the G
arameter ranging between 25 January 2020 and 11 May 2020.
pecifically, by learning from the historical time-series records
or the G parameter using a rolling time-window size of 5 days
or the data assimilation component, and fusing with the aggre-
ated word vectors derived from large volumes of Twitter data
t specific hidden layer(s) of the deep learning model which en-
ured a well-balanced weights distributions of the data features,
DANN can forecast the G parameter, with a lead-time of 1 day,
aving average RMSE and MAE scores of 0.00282 and 0.00214
espectively.

The novel contributions from the study mainly consist of the
ollowing aspects, namely: (a) combining NLP features extrac-
ion methods with neural network prediction model to forecast
he global spread of COVID-19 over time. By considering the
ommunity’s daily aggregated emotional responses towards the
andemic, our proposed ODANN model shows superiority in both
ccuracy and robustness, even towards missing data conditions.
nformation from Twitter offers valuable insights into people’s
motional responses towards COVID-19, which has been proven
o be useful to maximize the accuracy performance of our predic-
ive model when coupled with data assimilation at the selected
idden layer(s) of the deep learning model. Moreover, ODANN
an still maintain relatively low error scores, even when 30%
f random missing values were artificially introduced into the
riginal dataset; and (b) ability of ODANN to easily assimilate
r fuse with other socioeconomic and governmental factors of
arying characteristics, which can further enhance the model’s
redictive accuracy by ensuring a well-balanced weightage distri-
utions among the assigned neurons in the deep learning model.
e note that this model design or framework for assimilating
ifferent types of data features, while balancing the resulting
eightage distributions for the different types of data features
ithin a single-shot learning process, has not been explored by

ar for COVID-19 related predictions.
In our future works, we intend to assimilate contemporary

ata after 11 May 2020 to perform near real-time predictions.
ince the sentiments towards COVID-19 change rapidly, we can
onduct semantic analysis on informative texts from other pop-
lar social media platforms (i.e., Twitter, Facebook, Weibo, etc.).
he proposed approach has great potential to reveal the psycho-
ogical responses of the public towards COVID-19, hence iden-
ifying possible social concerns to forecast the global emotional
volution towards the current pandemic. Besides, social network
nalysis (SNA) based upon graph theory is another method to
onitor the spread of information on social media [47]. For
xample, we can perform SNA on COVID-19 related Twitter data
o examine the dynamic and complex patterns of public health
nformation to assist governments to control the volume of false
r inaccurate information pertaining to COVID-19 on the internet.
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